0

Full Content is available to subscribers

Subscribe/Learn More  >

Haptic Interface With Hybrid Actuator for Virtual Tissue Cutting

[+] Author Affiliations
Berk Gonenc

Johns Hopkins University, Baltimore, MD

Hakan Gurocak

Washington State University, Vancouver, WA

Paper No. DETC2015-46846, pp. V01BT02A054; 8 pages
doi:10.1115/DETC2015-46846
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1B: 35th Computers and Information in Engineering Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5705-2
  • Copyright © 2015 by ASME

abstract

Surgical training is an important and recent application where haptic interfaces are used to enhance the realism of virtual training simulators. Tissue cutting with surgical scissors is a common interaction mode in the simulations. The haptic interface needs to render a range of tissue properties and resistance forces accurately. In this research, we developed a hybrid haptic device made up of a DC servomotor and a magnetorheological (MR) brake. The motor can provide fast dynamic response and compensate for inertia and friction effects of the device. But it cannot supply high force levels and the sensation of stiff interaction with hard tissues such as tendons. On the other hand, the MR-brake can provide very high and stiff interaction forces yet cannot reflect fast dynamics that are encountered as the virtual scissors go through the tissue. Design details of the hybrid actuator and the haptic device are presented. A control scheme was developed to decompose the actuator command signal into two branches considering each actuator’s capabilities. Virtual tissue cutting experiments were conducted using three different scissor types and four types of rat tissue. Results are presented and discussed. Forces in a wider amplitude range compared to just using a DC motor could be generated by the hybrid actuator. It also enabled simulation of multiple scissor types using the same haptic interface due to the extended force amplitude range.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In