0

Full Content is available to subscribers

Subscribe/Learn More  >

A Virtual Reality Approach for Minimizing Information Loss in Multi-User, Scalable Environments

[+] Author Affiliations
Bryan Dickens, Steven Sellers, Gabe Harms, Owen Shartle, Conrad S. Tucker

The Pennsylvania State University, University Park, PA

Paper No. DETC2015-47414, pp. V01BT02A014; 11 pages
doi:10.1115/DETC2015-47414
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1B: 35th Computers and Information in Engineering Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5705-2
  • Copyright © 2015 by ASME

abstract

The authors of this work propose a virtual reality approach that overcomes two fundamental challenges experienced in physical learning environments; i) variations in audial quality, and ii) variations in visual quality, in an effort to achieve individual customization of information content. In physical brick and mortar environments, the dissemination of information is influenced by the medium that the information travels through, which is typically distorted by line of sight constraints and constraints that distort sound waves. The fundamental research question is how to achieve consistent quality of information being disseminated, as the number of audience members increases? There exists a knowledge gap relating to the creation of a scalable, networked, system for enabling real time, information exchange. The authors propose a virtual reality approach to address these limitations of physical learning spaces that minimizes the variability in audial and visual information dissemination. A real time, networked architecture is proposed that enables multiple individuals to simultaneously experience the same quality of audial and visual information, based on the optimal geospatial position for audial and visual exposure determined. A case study is introduced that first quantifies simulations of the audial and visual information loss experienced by audience members receiving information at different geospatial locations in a brick and mortar environment. This information loss is compared against the proposed virtual reality architecture that minimizes the variation in information dissemination. The authors demonstrate that the proposed solution is an improved, scalable multi-user system, unlike brick and mortar environments that are constrained by size and geospatial positioning.

Copyright © 2015 by ASME
Topics: Virtual reality

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In