0

Full Content is available to subscribers

Subscribe/Learn More  >

Text Analysis of Assembly Work Instructions

[+] Author Affiliations
Rahul Sharan Renu, Gregory Mocko

Clemson University, Clemson, SC

Paper No. DETC2015-47246, pp. V01BT02A003; 5 pages
doi:10.1115/DETC2015-47246
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1B: 35th Computers and Information in Engineering Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5705-2
  • Copyright © 2015 by ASME

abstract

The objective of this research is to investigate the requirements and performance of parts-of-speech tagging of assembly work instructions. Natural Language Processing of assembly work instructions is required to perform data mining with the objective of knowledge reuse. Assembly work instructions are key process engineering elements that allow for predictable assembly quality of products and predictable assembly lead times. Authoring of assembly work instructions is a subjective process. It has been observed that most assembly work instructions are not grammatically complete sentences. It is hypothesized that this can lead to false parts-of-speech tagging (by Natural Language Processing tools). To test this hypothesis, two parts-of-speech taggers are used to tag 500 assembly work instructions (obtained from the automotive industry). The first parts-of-speech tagger is obtained from Natural Language Processing Toolkit (nltk.org) and the second parts-of-speech tagger is obtained from Stanford Natural Language Processing Group (nlp.stanford.edu). For each of these taggers, two experiments are conducted. In the first experiment, the assembly work instructions are input to the each tagger in raw form. In the second experiment, the assembly work instructions are preprocessed to make them grammatically complete, and then input to the tagger. It is found that the Stanford Natural Language Processing tagger with the preprocessed assembly work instructions produced the least number of false parts-of-speech tags.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In