0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling the Lamination of a Multilayered Tape Cast Ceramic Component With Fugitive Phases Before Sintering

[+] Author Affiliations
Stephanie A. Wimmer, Virginia G. DeGiorgi, Edward Gorzkowski

Naval Research Laboratory, Washington, DC

Paper No. DETC2015-47548, pp. V01AT02A064; 8 pages
doi:10.1115/DETC2015-47548
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 35th Computers and Information in Engineering Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5704-5

abstract

A small finished ceramic component with micro-channels or other complex geometry requires a high degree of dimensional accuracy. The accuracy of the finished ceramic component depends upon the accuracy of the unfired ceramic body before sintering. One approach to creating micro-channels in ceramics is the fugitive phase approach. In this approach a sacrificial material is placed within the unfired ceramic to form channels or voids. The fugitive phase is removed or sacrificed during the subsequent sintering. For this paper, the authors examine the lamination step of the fugitive phase approach computationally. In the lamination step layers of unfired tape cast ceramic and layers of fugitive phase material are pressed together before sintering. The geometry examined in this paper is a quarter-symmetry model of a ten ceramic layer and nine fugitive phase layer structure. Three dimensional modeling is used to capture out of plane motion, displacement of the fugitive phase pieces, viscoelastic deformation, and rebounding when the layered structure is removed from the die press. The unfired ceramic is modeled as tape cast mullite and the fugitive phase is paper. The fugitive phase is modeled as linear elastic while the unfired ceramic is modeled as viscoelastic at a range of temperatures. The authors examine the filling of voids, pressure gradients, and conditions during unloading.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In