0

Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Methodology for the Creation of Customized Eruption Guidance Appliances

[+] Author Affiliations
Jacopo Tilli, Alessandro Paoli, Armando V. Razionale, Sandro Barone

University of Pisa, Pisa, Italy

Paper No. DETC2015-47232, pp. V01AT02A052; 8 pages
doi:10.1115/DETC2015-47232
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 35th Computers and Information in Engineering Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5704-5
  • Copyright © 2015 by ASME

abstract

Within the orthodontic field, malocclusion problems are usually treated by using different types of appliances. In particular, Eruption Guidance Appliances (EGAs) are recommended for early orthodontic treatment or prevention of malocclusion problems. The traditional approach with EGAs is based on the use of standard prefabricated appliances. Experts in the orthodontic field believe that the customization of the EGAs would strongly enhance the results of malocclusion treatments.

This paper presents an innovative methodology for the design and manufacturing of fully customized EGAs. The methodology is based on an extensive integration between traditional orthodontic procedures with advanced computer aided design processes. The methodology moves from the digitalization of the plaster models obtained by optical scanning techniques. The patient morphology is then exploited, under dental practitioner supervision, for the design of the appliance geometry through CAD modeling tools. Medical guided assessment is required throughout the most of the data elaboration processes, in order to design the EGAs accordingly to the patient’s clinical conditions. Low-pressure injection molds for the physical manufacturing of the appliances are then 3D printed by using rapid prototyping techniques. The proposed methodology allows the production of patient customized appliances guaranteeing low cost manufacturing and high quality standards, similar to those typically obtained by in series productions. Moreover, the presented approach offers a high integration level with numerical and finite element methods, which can be used for evaluating the stress applied on the EGA, thus allowing the reinforcement of the appliance prior its manufacturing.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In