Full Content is available to subscribers

Subscribe/Learn More  >

An Efficient Design Optimization Method for Functional Gradient Material Objects Based on Finite Element Analysis

[+] Author Affiliations
Feng Zhang, Chi Zhou, Sonjoy Das

University at Buffalo, The State University of New York, Buffalo, NY

Paper No. DETC2015-47772, pp. V01AT02A031; 9 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 35th Computers and Information in Engineering Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5704-5
  • Copyright © 2015 by ASME


Functional Gradient Material (FGM) is one of the most promising heterogeneous materials for its spatial continuity of material properties and functional flexibility. FGM is a well-studied research topic. In this paper, we utilize Finite Element Analysis (FEA) method to model objects with spatially varying material property. A two-stage optimization framework including Monte Carlo based global optimizer and gradient descent based local optimizer is proposed to achieve the optimal material composition in response to different user defined objectives. An error diffusion based halftoning technique is utilized to convert the continuous material distribution into discrete material distribution for viable manufacturing. The transition of the material properties are governed by predefined equations and only a few coefficients instead of large number of elements are to be optimized, therefore this optimization process is more computationally efficient than traditional techniques. Meanwhile it can automatically guarantee the smoothness of material transition along the body. Such design and optimization method has the potential to enable interactive multiple material modeling and simulation. Several experiments are carried out to demonstrate its efficiency and effectiveness.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In