0

Full Content is available to subscribers

Subscribe/Learn More  >

Active and Passive Vibration Control Using Compact Damping Patches: Assessment of a Reduced Order Model for an Euler Beam

[+] Author Affiliations
Joseph Plattenburg, Jason T. Dreyer, Rajendra Singh

The Ohio State University, Columbus, OH

Paper No. DSCC2015-9636, pp. V002T36A002; 10 pages
doi:10.1115/DSCC2015-9636
From:
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5725-0
  • Copyright © 2015 by ASME

abstract

Concurrent placement of compact active and passive damping patches for vibration reduction is a developing area of research. Analytical and computational models to evaluate alternate patch configurations and structural geometries are not widely available. To overcome this void, this paper presents a simplified discrete-system model for vibrations of a beam-like structure. A disturbance input is included in the model, along with a control input from an active patch. Localized structural damping resulting from a passive patch is modeled with an equivalent loss factor. Results from the simplified model are verified using a more detailed analytical formulation, which is based on the Ritz approximation. Verification studies include the effect of a passive damping patch on modal loss factors and broadband attenuation. Finally, a few case studies are proposed which show the efficacy of the reduced-order model for parametric design studies. These studies include determining the effect of localized damping on the control system parameters that are required for attenuation of localized and global motions. The effect of patch locations on system response is also studied. This work has potential applications in industry since compact damping patches are attractive NVH treatments that add minimal weight and complexity.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In