Full Content is available to subscribers

Subscribe/Learn More  >

Comparative Evaluation of Control-Oriented Zone Temperature Prediction Modeling Strategies in Buildings

[+] Author Affiliations
Venkatesh Chinde, Jeffrey C. Heylmun, Adam Kohl, Zhanhong Jiang, Soumik Sarkar, Atul Kelkar

Iowa State University, Ames, IA

Paper No. DSCC2015-9864, pp. V002T34A009; 10 pages
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5725-0
  • Copyright © 2015 by ASME


Predictive modeling of zone environment plays a critical role in developing and deploying advanced performance monitoring and control strategies for energy usage minimization in buildings while maintaining occupant comfort. The task remains extremely challenging, as buildings are fundamentally complex systems with large uncertainties stemming from weather, occupants, and building dynamics. Over the past few years, purely data-driven various control-oriented modeling techniques have been proposed to address different requirements, such as prediction accuracy, flexibility, computation and memory complexity. In this context, this paper presents a comparative evaluation among representative methods of different classes of models, such as first principles driven (e.g., lumped parameter autoregressive models using simple physical relationships), data-driven (e.g., artificial neural networks, Gaussian processes) and hybrid (e.g., semi-parametric). Apart from quantitative metrics described above, various qualitative aspects such as cost of commissioning, robustness and adaptability are discussed as well. Real data from Iowa Energy Center’s Energy Resource Station (ERS) test bed is used as the basis of evaluation presented here.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In