Full Content is available to subscribers

Subscribe/Learn More  >

Adaptive Robust Cascade Force Control of 1-DOF Joint Exoskeleton for Human Performance Augmentation

[+] Author Affiliations
Shan Chen, Zheng Chen, Xiaocong Zhu, Shiqiang Zhu

Zhejiang University, Hangzhou, China

Bin Yao

Zhejiang University, Hangzhou, ChinaPurdue University, West Lafayette, IN

Paper No. DSCC2015-9825, pp. V002T33A006; 8 pages
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5725-0
  • Copyright © 2015 by ASME


The control objective of exoskeleton for human performance augmentation is to minimize the human machine interaction force while carrying external loads and following human motion. This paper addresses the dynamics and the interaction force control of a 1-DOF hydraulically actuated joint exoskeleton. A spring with unknown stiffness is used to model the human-machine interface. A cascade force control method is adopted with high-level controller generating the reference position command while low level controller doing motion tracking. Adaptive robust control (ARC) algorithm is developed for both two controllers to deal with the effect of parametric uncertainties and uncertain nonlinearities of the system. The proposed adaptive robust cascade force controller can achieve small human-machine interaction force and good robust performance to model uncertainty which have been validated by experiment.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In