0

Full Content is available to subscribers

Subscribe/Learn More  >

Estimation of Location and Orientation From Range Measurements

[+] Author Affiliations
Sai Krishna Kanth Hari, Swaroop Darbha

Texas A & M University, College Station, TX

Paper No. DSCC2015-9972, pp. V002T31A005; 7 pages
doi:10.1115/DSCC2015-9972
From:
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5725-0
  • Copyright © 2015 by ASME

abstract

Localization is an important required task for enabling vehicle autonomy. Localization entails the determination of the position of the center of mass and orientation of a vehicle from the available measurements. In this paper, we focus on localization by using the range measurements available to a vehicle from the communication of its multiple onboard receivers with roadside beacons. The model proposed for measurement is as follows: the true distance between a receiver and a beacon is at most equal to a predetermined function of the range measurement. The proposed procedure for localization is as follows: Based on the range measurements specific to a receiver from the beacons, a finite LP (linear programming) is proposed to estimate the location of the receiver. The estimate is essentially the Chebychev center of the set of possible locations of the receiver. In the second step, the location estimates of the vehicle are corrected using rigid body motion constraints and the orientation of the rigid body is thus determined. Two numerical examples provided at the end corroborate the procedures developed in this paper.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In