Full Content is available to subscribers

Subscribe/Learn More  >

Automated Multi-Zone Linear Parametric Black Box Modeling Approach for Building HVAC Systems

[+] Author Affiliations
Rohit H. Chintala, Bryan P. Rasmussen

Texas A&M University, College Station, TX

Paper No. DSCC2015-9933, pp. V002T29A004; 10 pages
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5725-0
  • Copyright © 2015 by ASME


Optimal control algorithms such as distributed model predictive control (DMPC) offer tremendous potential in reducing energy consumption of building operations. Heating, ventilation and air-conditioning (HVAC) systems which form a major part of the building operations contain a large number of interconnected subsystems. One of the challenges associated with implementing DMPC is the development of reliable models of individual subsystems for prediction, especially for large scale systems. In this paper an automated method is proposed to develop linear parametric black box models for individual building HVAC subsystems. The modeling method proposed identifies the significant inputs, and the upstream and downstream neighbors of each subsystem before performing regression analysis to determine the model parameters. Automation of the model development makes the implementation of the model-based control algorithms much more feasible. The modeling method is then verified through an EnergyPLus model, and using data of a real office building.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In