Full Content is available to subscribers

Subscribe/Learn More  >

Sliding Mode Control for Heart Rate Regulation of Electric Bicycle Riders

[+] Author Affiliations
Daniel Meyer

Technische Universität München, Garching b. München, Germany

Wenlong Zhang, Masayoshi Tomizuka

University of California, Berkeley, CA

Paper No. DSCC2015-9712, pp. V002T27A003; 9 pages
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5725-0
  • Copyright © 2015 by ASME


In this paper a new controller for electric bicycles is proposed to maintain a desired heart rate level and improve the riding experience of cyclists. The controller achieves this by adequately adjusting the motor assistance without affecting the cycling velocity. First, a human heart rate model is fitted to experimental data to model the heart rate response of cyclists during different exercises. Then, a sliding mode controller is designed to keep the human heart rate at a predefined level. Furthermore, a feedforward controller is introduced into the system to improve both the tracking performance and riding experience. The feedforward controller consists of an inverse human heart rate response model, which estimates the necessary rider torque for a desired heart rate level. The controller is implemented with a commercial electric bicycle. Simulation and experimental results are presented to assess the validity of the controller. Whereas the sliding mode controller itself achieves good tracking performance, the sliding mode control combined with the feedforward control additionally reduces the maximal exerted rider torque and improves the riding experience.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In