0

Full Content is available to subscribers

Subscribe/Learn More  >

Integrating Structure and Controller Design to Mechanical Systems via Decentralized Control Techniques

[+] Author Affiliations
Yilun Liu, Lei Zuo

Virginia Tech, Blacksburg, VA

Paper No. DSCC2015-9886, pp. V002T25A003; 10 pages
doi:10.1115/DSCC2015-9886
From:
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5725-0
  • Copyright © 2015 by ASME

abstract

The overall performance of the mechanical system can be significantly improved by concurrently optimizing the plant and the controller. This paper proposes a new integrated design method via decentralized control techniques to concurrently optimize the structure and the controller, which aims at minimizing the system H2 norm from the disturbance to the system cost. The integrated design problems have been formulated in the cases of a full state feedback controller and a full order output feedback controller respectively. Inspired by noticing that the control techniques are capable of optimizing both the parameters of passive springs and dampers and the controller for the mechanical system, we extend the current LTI control system to a more general framework suitable for the integrated design needs, where the structure design is treated as the passive control optimization tackled by decentralized control techniques with static output feedback, while the active controller is optimized by solving the modified Riccati equations. With the extended system framework, we transfer the original non-convex integrated optimization problem to an unconstrained optimization problem by introducing Lagrange multipliers and a Lagrange function. The gradient-based optimization method is employed to effectively find the optimality solution of the integrated design. Two design examples including an active-passive vehicle suspension system and an active-passive Tuned Mass Damper (TMD) system are designed by the proposed integrated design method. The improvement of the overall system performance due to the integrated design is also presented in comparison with the conventional design methods.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In