Full Content is available to subscribers

Subscribe/Learn More  >

EEG Stochastic Nonlinear Oscillator Models for Alzheimer’s Disease

[+] Author Affiliations
Parham Ghorbanian, Hashem Ashrafiuon

Villanova University, Villanova, PA

Subramanian Ramakrishnan

University of Minnesota Duluth, Duluth, MN

Paper No. DSCC2015-9676, pp. V001T16A002; 6 pages
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5724-3
  • Copyright © 2015 by ASME


In this article, we derive unique stochastic nonlinear coupled oscillator models of EEG signals from an Alzheimer’s Disease (AD) study. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing - van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects. The selected decision variable are the model parameters and noise intensity. While, the selected signal characteristics are power spectral densities in major brain frequency bands and Shannon and sample entropies to match the signal information content and complexity. It is shown that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. Moreover, the inclusion of sample entropy in the optimization process significantly enhances the stochastic nonlinear oscillator model performance. The study suggests that EEG signals recorded under different brain states as well as those belonging to a brain disorder such as Alzheimer’s disease can be uniquely represented by stochastic nonlinear oscillators paving the way for identification of new discriminants.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In