0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Evaluation of an Extended Kalman Filter for State Estimation of a Pseudo-2D Thermal-Electrochemical Lithium-Ion Battery Model

[+] Author Affiliations
Shi Zhao, Adrien M. Bizeray, Stephen R. Duncan, David A. Howey

University of Oxford, Oxford, UK

Paper No. DSCC2015-9836, pp. V001T13A007; 5 pages
doi:10.1115/DSCC2015-9836
From:
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5724-3
  • Copyright © 2015 by ASME

abstract

Fast and accurate state estimation is one of the major challenges for designing an advanced battery management system based on high-fidelity physics-based model. This paper evaluates the performance of a modified extended Kalman filter (EKF) for on-line state estimation of a pseudo-2D thermal-electrochemical model of a lithium-ion battery under a highly dynamic load with 16C peak current. The EKF estimation on the full model is shown to be significantly more accurate (< 1% error on SOC) than that on the single-particle model (10% error on SOC). The efficiency of the EKF can be improved by reducing the order of the discretised model while maintaining a high level of accuracy. It is also shown that low noise level in the voltage measurement is critical for accurate state estimation.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In