Full Content is available to subscribers

Subscribe/Learn More  >

A Diagnostic Scheme for Detection, Isolation and Estimation of Electrochemical Faults in Lithium-Ion Cells

[+] Author Affiliations
Satadru Dey, Beshah Ayalew

Clemson University, Greenville, SC

Paper No. DSCC2015-9699, pp. V001T13A001; 10 pages
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5724-3
  • Copyright © 2015 by ASME


Improvement of the safety and reliability of the Lithium-ion (Li-ion) battery operation is one of the key tasks for advanced Battery Management Systems (BMSs). It is critical for BMSs to be able to diagnose battery electrochemical faults that can potentially lead to catastrophic failures. In this paper, an observer-based fault diagnosis scheme is presented that can detect, isolate and estimate some internal electrochemical faults. The scheme uses a reduced-order electrochemical-thermal model for a Li-ion battery cell. The paper first presents a modeling framework where the electrochemical faults are modeled as parametric faults. Then, multiple sliding mode observers are incorporated in the diagnostic scheme. The design and selection of the observer gains as well as the convergence of the observers are verified theoretically via Lyapunov’s direct method. Finally, the performance of the observer-based diagnostic scheme is illustrated via simulation studies.

Copyright © 2015 by ASME
Topics: Lithium



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In