0

Full Content is available to subscribers

Subscribe/Learn More  >

A Control-Oriented Jet Ignition Combustion Model for an SI Engine

[+] Author Affiliations
Ruitao Song, Gerald Gentz, Guoming Zhu, Elisa Toulson, Harold Schock

Michigan State University, East Lansing, MI

Paper No. DSCC2015-9687, pp. V001T11A001; 8 pages
doi:10.1115/DSCC2015-9687
From:
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5724-3
  • Copyright © 2015 by ASME

abstract

A turbulent jet ignition system of a spark ignited (SI) engine consists of pre-combustion and main-combustion chambers, where the combustion in the main-combustion chamber is initiated by turbulent jets of reacting products from the pre-combustion chamber. If the gas exchange and combustion processes are accurately controlled, the highly distributed ignition will enable very fast combustion and improve combustion stability under lean operations, which leads to high thermal efficiency, knock limit extension, and near zero NOx emissions. For model-based control, a precise combustion model is a necessity. This paper presents a control-oriented jet ignition combustion model, which is developed based on simplified fluid dynamics and thermodynamics, and implemented into a dSPACE based real-time hardware-in-the-loop (HIL) simulation environment. The two-zone combustion model is developed to simulate the combustion process in two combustion chambers. Correspondingly, the gas flowing through the orifices between two combustion chambers is divided into burned and unburned gases during the combustion process. The pressure traces measured from a rapid compression machine (RCM), equipped with a jet igniter, are used for initial model validation. The HIL simulation results show a good agreement with the experimental data.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In