Full Content is available to subscribers

Subscribe/Learn More  >

Shared Fuzzy Control of Multiple Quadrotor UAVs With Time-Dependent Delay and Bounded Control-Input Constraint

[+] Author Affiliations
Mark D. Johnson, Mohammad A. Ayoubi

Santa Clara University, Santa Clara, CA

Paper No. DSCC2015-9907, pp. V001T06A006; 10 pages
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5724-3
  • Copyright © 2015 by ASME


We propose a shared fuzzy controller for position and attitude control of multiple quadrotor unmanned aerial vehicles (UAVs). Using the nonlinear governing equations of motion and kinematics of a quadrotor, we develop a Takagi-Sugeno (T-S) fuzzy model for a quadrotor. Then, we consider time-varying delays due to wireless connectioninto the T-S fuzzy model. We use the sufficient stability condition based on the Lyapunov-Krasovskii stability theorem and the parallel distributed compensation (PDC) technique to determine the fuzzy control law. For practical purposes, we include actuator amplitude constraint into the design process. The problem of designing a shared fuzzy controller is cast in the form of linear matrix inequalities (LMIs). A feasible solution region is found in terms of maximum magnitude and rate of time-varying delay. In the end, the stability, performance, and robustness of the proposed shared fuzzy controller are examined via numerical simulation.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In