0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Evaluation of Two Nonlinear Controllers on an Attitude System Using SGCMG

[+] Author Affiliations
Juan Sebastian Nuñez Gamboa, Juan David López

University of Los Andes, Bogotá, Colombia

Paper No. DSCC2015-9884, pp. V001T06A003; 10 pages
doi:10.1115/DSCC2015-9884
From:
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5724-3
  • Copyright © 2015 by ASME

abstract

This paper deals with the modeling and simulation of an attitude control system composed of three Single Gimbal Control Moment Gyroscopes (SGCMG) in a pyramidal configuration using two nonlinear controllers. The first controller is a first-order sliding mode which is robust to bounded uncertainties such as modeling simplifications, sensor noise and external disturbances, but it causes high frequency input, which can exceed the limit of the power systems. To overcome the drawback of the sliding mode, an I&I adaptive control is proposed. This controller estimates unknown parameters by introducing new states, resulting in smaller input gains and frequencies. At first, the dynamic model of SGCMG and the dynamic model of the attitude system were constructed. Based on this model, the steering laws of the SGCMG’s for the two nonlinear controllers were designed. The simulation of the attitude control system is implemented in MATLAB. The simulation results show the effectiveness and the advantages of the proposed controllers.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In