0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of an Adaptive Singularity-Free Control Moment Gyroscope (ASCMG) Cluster for Spacecraft Attitude Control

[+] Author Affiliations
Sasi Prabhakaran Viswanathan

New Mexico State University, Las Cruces, NM

Amit K. Sanyal

Syracuse University, Syracuse, NY

Paper No. DSCC2015-9818, pp. V001T06A002; 10 pages
doi:10.1115/DSCC2015-9818
From:
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5724-3
  • Copyright © 2015 by ASME

abstract

Spacecraft attitude control using an Adaptive Singularity-free Control Moment Gyroscope (ASCMG) cluster design for internal actuation is presented. A complete dynamics model is derived using the principles of variational mechanics, relaxing some common assumptions made in prior literature on control moment gyroscopes. These assumptions include perfect axisymmetry of the rotor and gimbal structures, and perfect alignment of the centers of mass of the gimbal and the rotor. The resulting dynamics display complex nonlinear coupling between the internal degrees of freedom associated with the CMG and the spacecraft base body’s rotational degrees of freedom in the absence of these assumptions. This dynamics model is further generalized to include the effects of multiple CMGs placed in the spacecraft bus, and sufficient conditions for non-singular CMG cluster configurations are obtained. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of CMGs, are provided. A control scheme using a finite number of CMGs in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented. The dynamics model of the spacecraft with a finite number of CMGs is then simplified under the assumption that the rotor is axisymmetric, in which case it is shown that singularities are avoided. As an example, the case of three CMGs with axisymmetric rotors, placed in a tetrahedron configuration inside the spacecraft, is considered. The control scheme is then numerically implemented using a geometric variational integrator and the results confirm the singularity-free property and high control authority of the ASCMG cluster. Moreover, as rotor misalignments are addressed in the dynamics model, the ASCMG cluster can adapt to them without requiring hardware changes.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In