0

Full Content is available to subscribers

Subscribe/Learn More  >

A MIMO Sliding Mode Approach to Limit Protection in Aero-Engines

[+] Author Affiliations
Xian Du, YingQing Guo

Northwestern Polytechnical University, Xi’an, Shaanxi, China

Hanz Richter

Cleveland State University, Cleveland, OH

Paper No. DSCC2015-9634, pp. V001T06A001; 6 pages
doi:10.1115/DSCC2015-9634
From:
  • ASME 2015 Dynamic Systems and Control Conference
  • Volume 1: Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
  • Columbus, Ohio, USA, October 28–30, 2015
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5724-3
  • Copyright © 2015 by ASME

abstract

This paper proposes a scheme for limit protection in aero-engines with two control inputs and two regulated variables. The strategy extends existing results based on single-input sliding mode regulators and the min-max switching logic. The proposed multi-input strategy is able to manage engine limits effectively and offers better transient response than the traditional min-max architecture with linear regulators. The paper presents design guidelines for the multivariable sliding mode controller and the switching logic. The influence of key parameters is described and a simulation-based comparative study is made between the proposed approach and the existing single-input approach. It is shown that the multi-input technique has two clear advantages over the single-input approach, namely the ability to track fan speed (or other output related to thrust) even with harsh constrains, and the possibility of faster responses with smaller fuel flows by adjusting a secondary setpoint reference.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In