0

Full Content is available to subscribers

Subscribe/Learn More  >

Exhaust Conditioning Technology to Prevent Sulfur Poisoning on Methane Oxidation Catalyst

[+] Author Affiliations
Isna Y. Goenawan, Linjie (Robin) Hu, Shazam Williams

DCL International Inc., Concord, ON, Canada

Paper No. ICEF2015-1118, pp. V002T04A007; 8 pages
doi:10.1115/ICEF2015-1118
From:
  • ASME 2015 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • Houston, Texas, USA, November 8–11, 2015
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5728-1
  • Copyright © 2015 by ASME

abstract

In some regions of the world, emissions of total organic carbon (TOC), including methane and non-methane hydrocarbons (NMHCs), from the tail pipe of natural gas or biogas fuelled combustion equipments are strictly regulated (e.g. 150 mg/Nm3 of exhaust gas in Italy). Post combustor has been widely chosen in response to the TOC emission targets. TOC typically consists of >90% methane — a strong greenhouse gas and the most challenging compound to remove due to its highly stable form. Thus, more gas is being consumed to burn the TOC present in the exhaust, resulting in higher operating (or power production) costs.

A passive catalytic approach is an alternative to post combustor. Palladium based oxidation catalyst is known to actively remove TOC, providing no sulfur compounds present. Sulfur poisons and deactivates the catalyst in a short time. This paper presents a concept to extend the life of the oxidation catalyst by using an exhaust post conditioning system. The system is designed to eliminate and withstand contaminants, yielding a protection to the catalyst. Consequently, the catalyst life is prolonged by about 50 times.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In