0

Full Content is available to subscribers

Subscribe/Learn More  >

Equivalent Circuit Modeling of Patch-Based Piezoelectric Energy Harvesting on Plate-Like Structures With AC-DC Conversion

[+] Author Affiliations
Amirreza Aghakhani, Ipek Basdogan

Koc University, Istanbul, Turkey

Alper Erturk

Georgia Institute of Technology, Atlanta, GA

Paper No. SMASIS2015-9035, pp. V002T07A017; 8 pages
doi:10.1115/SMASIS2015-9035
From:
  • ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Integrated System Design and Implementation; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting
  • Colorado Springs, Colorado, USA, September 21–23, 2015
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5730-4
  • Copyright © 2015 by ASME

abstract

The equivalent circuit modeling of the vibration-based energy harvesters for accurate estimation of electrical response has drawn much attention over the recent years. Different methods have been proposed to obtain the equivalent circuit parameters using analytical and finite element models of the piezoelectric energy harvesters. In such methods, the structure is a typical cantilever beam with piezoelectric layers under base excitation. As an alternative to beams, piezoelectric patch-based harvesters attached to thin plates can be considered due to the wide use of plate-like structures in automotive, marine and aerospace applications. Considering these needs, a multi-mode equivalent circuit model of a piezoelectric energy harvester integrated to a thin plate is developed in this study. Equivalent circuit parameters are obtained from analytical distributed-parameter model of the harvester which covers the electromechanical coupling behavior of the piezoelectric patch and vibration of the host plate. The multi-mode circuit representation of the harvester is built via electronic circuit simulation software SPICE. Using the SPICE software, electrical outputs of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are then validated for the standard AC-AC and AC-DC configurations. For the AC configuration, voltage Frequency Response Functions (FRFs) are calculated for various resistive loads and they exhibit excellent agreement with the published analytical closed-form solution. For the full-wave rectifier configuration, simulation results of the DC voltage and power outputs are calculated for a wide range of load resistance values and compared with the analytical single-mode expression of the harvester in the literature.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In