0

Full Content is available to subscribers

Subscribe/Learn More  >

Understanding the Relationship Between Pitch Agility and Propulsive Aerodynamic Forces in Bio-Inspired Flapping Wing Vehicles

[+] Author Affiliations
Zohaib Hasnain, James E. Hubbard, Jr.

University of Maryland, College Park, MD

Joseph Calogero, Mary I. Frecker

Pennsylvania State University, University Park, PA

Aimy A. Wissa

University of Illinois, Champagne, IL

Paper No. SMASIS2015-8835, pp. V002T06A001; 10 pages
doi:10.1115/SMASIS2015-8835
From:
  • ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Integrated System Design and Implementation; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting
  • Colorado Springs, Colorado, USA, September 21–23, 2015
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5730-4
  • Copyright © 2015 by ASME

abstract

Ornithopters, or flapping wing mechanical birds, represent a unique category of aerial vehicles that fill a need for small-scale, agile, long range, and payload-capable flight vehicles. This study focuses on understanding the relationship between the propulsive aerodynamic forces and pitch agility in these flapping wing vehicles. Using analytical methods, the aerodynamic moment acting upon a wing undergoing elastic flapping was calculated. A method to determine the pitch stiffness of the vehicle was then derived using a preexisting stability analysis. This method was used to demonstrate that pitch agility in flapping wing birds is intricately tied to the flapping cycle with different parts of the cycle creating stabilizing and destabilizing effects. The results indicated that pitch agility, and propulsive force generation, have a dependency on the shape of the wing, and that deformations such as bend and sweep are capable of making the vehicle more agile. Contact-aided compliant mechanisms with nonlinear stiffness were designed and inserted into the wing of an ornithopter to induce controlled morphing. These elements have varying stiffness during the upstroke and downstroke parts of the cycle which introduces an asymmetry between the two halves of the flapping cycle. The resulting flapping motion exhibited a two fold increase in horizontal propulsive force over the baseline case. A motion tracking system was used to capture the free flight response of the ornithopter in steady level flight. This information was then used to calculate the pitch stiffness of the ornithopter with a rigid spar, and, one with a nonlinear compliant element inserted into the spar to induce a desired shape change. The results revealed that an upstroke in which the aerodynamic forces are similar in magnitude to that of the downstroke, may be necessary to make the vehicle more agile, and, that there is a compromise between vehicle agility and flight propulsive forces.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In