0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Experimental Analysis of a Biomedical Prosthetic Knee With Magnetorheological Fluid

[+] Author Affiliations
The Nguyen, Alan Suarez, Saurabh Bapat

California State University Fresno, Fresno, CA

Paper No. SMASIS2015-8974, pp. V002T04A012; 5 pages
doi:10.1115/SMASIS2015-8974
From:
  • ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Integrated System Design and Implementation; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting
  • Colorado Springs, Colorado, USA, September 21–23, 2015
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5730-4
  • Copyright © 2015 by ASME

abstract

Current prosthetic legs rely on technology that is inefficient. Electric motors used today require high amounts of current to operate. Prostheses utilizing smart materials, including magnetorheological fluid (MRF), require less power to operate effectively. In this study, the MR fluid knee was designed for above the knee amputees. The design was in the family of MR fluid brake/clutch as it provides simple design and good MR fluid uniformity. However, this MR knee design is different from any existing MR brake, featuring a novel non-circular rotor. Three fourths of the rotor, considered circular, has the same radius, and the remaining quarter has a varying radius to provide a variable gap size between the rotor and stator. This feature allows the MR fluid to experience a stronger magnetic field as the knee rotates, resulting in a variable braking torque. At this stage of research, the first working prototype of the proposed MR fluid knee was built and tested to determine the braking torque profile. Corresponding theoretical models were also created. The calculated torque was used to predict the performance of the MRF knee. The experiments has been conducted to examine the MRF knee performance and to compare with the theoretical model. The knee was expected to use less power to operate and provided the necessary braking torque required by an average male human body. An improved design was planned for weight reduction and optimization to allow the commercialization of the MRF knee.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In