0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Strain Sensor Cable Models and Effective Deployments for Distributed Fiber Optical Geotechnical Monitoring System

[+] Author Affiliations
Dana DuToit

Omnisens, Chaska, MN

Kent Ryan

Williams Pipeline, Salt Lake City, UT

John Rice, James Bay

Utah State University, Logan, UT

Fabien Ravet

Omnisens do Brasil, Rio de Janeiro, RJ, Brazil

Paper No. IPG2015-8520, pp. V001T03A004; 10 pages
doi:10.1115/IPG2015-8520
From:
  • ASME 2015 International Pipeline Geotechnical Conference
  • ASME 2015 International Pipeline Geotechnical Conference
  • Bogota, Colombia, July 15–17, 2015
  • Conference Sponsors: Pipeline Systems Division
  • ISBN: 978-0-7918-5691-8
  • Copyright © 2015 by ASME

abstract

Long range, distributed fiber optic sensing systems have been an available tool for more than a decade to monitor pipeline subsidence integrity challenges. Effective deployment scenarios are an important decision to be factored into the selection of this monitoring equipment and typologies relative to specific project needs. In an effort to analyze the effectiveness of various fiber optic deployment conditions, a controlled field experiment was conducted. Within this field experiment, a variety of distributed fiber optic sensors and point sensors were deployed in predefined positions. These positions relative to the pipeline were selected to support a range of deployment needs including new construction or retrofitting of existing pipelines. A 16-inch diameter by 60-meter long epoxy coated pipeline that was capable of being pressurized to mimic operating conditions was utilized. This test pipe was installed in a typical trench setting. Conventional point gauges were installed at key locations on the pipeline. Fiber optic sensor cables were installed at key locations providing 14 alternative scenarios in terms of sensitivity, accuracy, and cost.

After construction of the test pipeline, real time continuous monitoring via the array of conventional and fiber optic sensors commenced. A deep trench was excavated adjacent and parallel to the central portion of the pipeline which began to induce subsidence in the test pipeline. Continued monitoring of the various sensors produced real time visualization of the evolving subsidence. A comparison of the reaction of the sensors is compiled to provide an intelligent selection criteria for integrity managers in terms of accuracy, deployment, and costs for pipeline subsidence monitoring projects. In addition, further analysis of this sensor data should provide more insight into pipeline/soil interaction models and behaviors.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In