0

Full Content is available to subscribers

Subscribe/Learn More  >

PVCO Pipeline Performance Under Large Ground Deformation

[+] Author Affiliations
Brad P. Wham, Christina Argyrou, Thomas D. O’Rourke, Harry E. Stewart, Timothy K. Bond

Cornell University, Ithaca, NY

Paper No. IPG2015-8508, pp. V001T01A001; 10 pages
doi:10.1115/IPG2015-8508
From:
  • ASME 2015 International Pipeline Geotechnical Conference
  • ASME 2015 International Pipeline Geotechnical Conference
  • Bogota, Colombia, July 15–17, 2015
  • Conference Sponsors: Pipeline Systems Division
  • ISBN: 978-0-7918-5691-8
  • Copyright © 2015 by ASME

abstract

Technological advances have improved pipeline capacity to accommodate large ground deformation associated with earthquakes, floods, landslides, tunneling, deep excavations, mining, and subsidence. The fabrication of polyvinyl chloride (PVC) piping, for example, can be modified by expanding PVC pipe stock to approximately twice its original diameter, thus causing PVC molecular chains to realign in the circumferential direction. This process yields biaxially oriented polyvinyl chloride (PVCO) pipe with increased circumferential strength, reduced pipe wall thickness, and enhanced cross-sectional flexibility.

This paper reports on experiments performed at the Cornell University Large-Scale Lifelines Testing Facility characterizing PVCO pipeline performance in response to large ground deformation. The evaluation was performed on 150-mm (6-in.)-diameter PVCO pipelines with bell-and-spigot joints. The testing procedure included determination of fundamental PVCO material properties, axial joint tension and compression tests, four-point bending tests, and a full-scale fault rupture simulation. The test results show the performance of segmental PVCO pipelines under large ground deformation is strongly influenced by the axial pullout and compressive load capacity of the joints, as well as their ability to accommodate deflection and joint rotation. The PVCO pipeline performance is quantified in terms of its capacity to accommodate horizontal ground strain, and compared with a statistical characterization of lateral ground strains caused by soil liquefaction during the Canterbury earthquake sequence in New Zealand.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In