Full Content is available to subscribers

Subscribe/Learn More  >

Two Phase Flow Simulation of Water Ring Vacuum Pump Using VOF Model

[+] Author Affiliations
Hui Ding, Yu Jiang

Simerics, Inc., Bellevue, WA

Hao Wu

Lanzhou University of Technology, Lanzhou, Gansu, China

Jian Wang

Beijing Hi-key Tech Co. Ltd, Beijing, China

Paper No. AJKFluids2015-33654, pp. V001T33A019; 7 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME


Due to the complex two phase flow, CFD simulation of liquid ring pump used to be extremely challenging. Using a recently developed Volume of Fluid (VOF) two phase flow model, this paper presents a 3D transient CFD model for a water ring vacuum pump. The test simulations show that the new VOF model is very robust and can catch most of the important physics when applied to a industrial water ring vacuum pump. Model formulation and problem setup will be presented in detail in the paper. Important issues that could affect the simulation results will be discussed. Water ring pump flow field characteristics revealed from simulation results will be summarized with explanation. And finally the simulation results will be compared with experiment test data.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In