0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Response Analysis of Balance Drum Labyrinth Seal Groove Geometries Optimized for Minimum Leakage

[+] Author Affiliations
Alexandrina Untaroiu, Neal Morgan

University of Virginia, Charlottesville, VA

Vahe Hayrapetian

Flowserve Corporation, Vernon, CA

Bruno Schiavello

Flowserve Corporation, Bethlehem, PA

Paper No. AJKFluids2015-33423, pp. V001T33A012; 10 pages
doi:10.1115/AJKFluids2015-33423
From:
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME

abstract

Annular labyrinth seals often have a destabilizing effect on pump rotordynamics due to the large cross-coupled forces generated when the fluid is squeezed by an oscillating rotor. In this study several novel groove geometries are investigated for their effect on the rotordynamic coefficients of the labyrinth seal. The groove cavity geometry of a baseline 267 mm balance drum labyrinth seal with a clearance of 0.305 mm and 20 equally spaced groove cavities were optimized for minimum leakage. From the pool of possible groove designs analyzed, nine test cases were selected for maximum or minimum leakage and for a variety of groove cavity shapes. The rotordynamic coefficients were calculated for these cases using a hybrid CFD-bulk flow method. The rotordynamic coefficients obtained by this method were then used with a rotordynamic model of the entire pump to determine the overall stability. Results show that labyrinth seal’s groove shape can be optimized to generate lower leakage rates, while the effects on dynamic properties are only minimally changed. If the seal dynamic response needs to be modified in addition to targeting a lower leakage rate, for instance to exhibit increased damping values, then the leakage rate and the damping coefficient need to be set as objective functions in the optimization loop.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In