0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Looped Airfoil Wind Turbine (LAWT™) Design Parameters for Maximum Power Generation

[+] Author Affiliations
Subhodeep Banerjee, Binhe Song, Ramesh K. Agarwal

Washington University in St. Louis, St. Louis, MO

George Syrovy

EverLift Wind Technology, Inc., Nassau, DE

Paper No. AJKFluids2015-28124, pp. V001T28A001; 7 pages
doi:10.1115/AJKFluids2015-28124
From:
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME

abstract

The looped airfoil wind turbine (LAWT™) is a patented new technology by EverLift Wind Tecnology, Inc. for generating power from wind. It takes advantage of the superior lift force of a linearly traveling wing compared to the rotating blades in conventional wind turbine configurations. Compared to horizontal and vertical axis wind turbines, the LAWT™ can be manufactured with minimal cost because it does not require complex gear systems and its blades have a constant profile along their length [1]. These considerations make the LAWT™ economically attractive for small-scale and decentralized power generation in rural areas. Each LAWT™ is estimated to generate power in the range of 10 kW to 1 MW. Due to various advantages, it is meaningful to determine the maximum power generation of a LAWT™ by optimizing the structural layout.

In this study, CFD simulations were conducted using ANSYS Fluent to determine the total lift and drag coefficient for a cascade of airfoils. The k-kl-ω turbulence model was used to account for flow in the laminar-turbulent transition region. Given the lift and drag coefficients and the kinematics of the system, an analytical formula for the power generation of the LAWT™ was developed. General formulas were obtained for the average lift and drag coefficients so that the total power could be predicted for any number of airfoils in LAWT™. The spacing between airfoils was identified as the key design parameter that affected the power generation of the LAWT™. The results show that a marked increase in total power can be achieved if the optimum spacing between the airfoils is used.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In