Full Content is available to subscribers

Subscribe/Learn More  >

Study of the Melting Behavior in a PCM-Based Thermal Energy Storage

[+] Author Affiliations
Mohammad Bashar, Kamran Siddiqui

University of Western Ontario, London, ON, Canada

Paper No. AJKFluids2015-22239, pp. V001T22A003; 7 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME


Thermal energy storages are becoming important due to their significance in energy conservation as well as for the uninterrupted supply of thermal energy from renewable energy sources. The latent heat-based thermal energy storage systems utilizing phase change material (PCM) are gaining much attention due to some inherent advantages compared to sensible heat-based storage systems. However, the heat transfer process associated with the phase change in a PCM is complex and not well understood. In the present study, the melting process in a PCM-based thermal storage is experimentally studied. Two different configurations of the heat source were considered; horizontal and U-tube heat sources. The results show that the heat source shape has a significant influence on the solid to liquid phase change process (melting). The results also show that for the horizontal heat source configuration, the solid-liquid interface has a wavy profile, which is attributed to the convective cells in the melted domain of the PCM. These convective cells also influence the heat transfer coefficient, which decreased with an increase in the melted fraction. In U-tube configuration, the heat is non-uniformly transferred to the PCM domain.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In