Full Content is available to subscribers

Subscribe/Learn More  >

Impact of Operating Parameters on Beta Type Regenerative Stirling Machine Performances

[+] Author Affiliations
Houda Hachem, Ramla Gheith, Sassi Ben Nasrallah

University of Monastir, Monastir, Tunisia

Fethi Aloui

University of Valenciennes, Valenciennes, France

Paper No. AJKFluids2015-22088, pp. V001T22A002; 8 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME


Due to its high efficiency, fast cool-down, small size, light weight, low power consumption, high reliability, Stirling cycle machine has many successful commercial applications such as heating and cooling. In the present paper, performances of a Beta type Stirling machine having a regenerative displacer were investigated. Energy analysis is reproduced taking into account complex phenomena related to compressible fluid mechanics, thermodynamics and heat transfer. A special attention is paid to the effect of such operating parameters as pressure, temperature, frequency and cooling water flow rate on Beta type regenerative Stirling machine performances. A MATLAB program was developed. Net cooling capacity, imputed work and COP inside the machine were assumed and compared to the experimental values. Comparing the results obtained by this code with experimental data, an acceptable agreement can be deduced for the predicted performance of the Stirling machine. The optimum speed is investigated.

Copyright © 2015 by ASME
Topics: Machinery



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In