0

Full Content is available to subscribers

Subscribe/Learn More  >

In-Situ Visualization of Evaporation Induced Self-Assembly Phenomena of Nanofluids Detecting the Interfacial Surface Plasmon Reflectance

[+] Author Affiliations
Iltai (Isaac) Kim

Texas A&M University-Corpus Christi, Corpus Christi, TX

Kenneth David Kihm

University of Tennessee, Knoxville, TN

Paper No. AJKFluids2015-20804, pp. V001T20A002; 6 pages
doi:10.1115/AJKFluids2015-20804
From:
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME

abstract

Innovative optical techniques based on nano-biophotonics such as surface plasmon resonance (SPR) imaging and R-G-B natural fringe mapping techniques are developed to characterize the transport and optical properties of nanofluids in situ, real-time, and full field manner. Recent results regarding the characterization of nanofluids are summarized and future research directions are presented.

47 nm Al2O3 nanoparticles are dispersed in water with various concentrations. Al2O3 nanofluids droplets are placed on substrates and evaporated in room temperature. In-situ visualization of evaporation-induced self-assembly is conducted to detect concentration, effective refractive index, and different self-assembled pattern including cavity with various nanofluids concentrations and surface hydrophobbicities with SPR and fringe mapping.

During the evaporation, time-dependent and near-field nanoparticle concentrations are determined by correlating the SPR reflectance intensities with the effective refractive index (ERI) of the nanofluids.

With increasing the concentrations of nanofluids, the existence of hidden complex cavities inside a self-assembled nanocrystalline structure or final dryout pattern is discovered in real-time. R-G-B natural fringe mapping allowed the reconstruction of the 3D cavity formation and crystallization processes quantitatively. The formation of the complex inner structure was found to be attributable to multiple cavity inceptions and their competing growth during the aquatic evaporation.

Furthermore, the effect of surface hydrophobicity is examined in the formation of hidden complex cavities, taking place on three different substrates bearing different levels of hydrophobicity; namely, cover glass (CG), gold thin film (Au), and polystyrene dish (PS).

These surface plamson resonance imaging and natural fringe mapping techniques are expected to provide a breakthrough in micro-nanoscale thermal fluids phenomena and nano-biochemical sensing when coupled with localized surface Plasmon and metamaterials techniques.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In