0

Full Content is available to subscribers

Subscribe/Learn More  >

Direct Numerical Simulation of Turbulent Channel Flow With Heat Transfer for Low Prandtl and High Reynolds and Comparison With Algebraic Heat Flux Model

[+] Author Affiliations
Haomin Yuan

University of Wisconsin, Madison, WI

Elia Merzari

Argonne National Laboratory, Argonne, IL

Paper No. AJKFluids2015-8740, pp. V001T08A002; 9 pages
doi:10.1115/AJKFluids2015-8740
From:
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME

abstract

The flow characteristic of fluid at low Prandtl number is of continued interest in the nuclear industry because liquid metals are to be used in the next-generation nuclear power reactors. In this work we performed direct numerical simulation (DNS) for turbulent channel flow with fluid of low Prandtl number. The Prandtl number was set to 0.025, which is representative of the behavior of liquid metals. Constant heat flux was imposed on the walls to study heat transfer behavior, with different boundary conditions for temperature fluctuation. The bulk Reynolds number was set as high as 50,000, with a corresponding friction Reynolds number of 1,200, which is closer to the situation in a reactor or a heat exchanger than used in normally available databases. Budgets for turbulent variables were computed and compared with predictions from several RANS turbulence models. In particular, the Algebraic Heat Flux Model (AHFM) has been the focus of this comparison with DNS data. The comparisons highlight some shortcomings of AHFM along with potential improvements.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In