0

Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Study of Insect Wing Cross-Sectional Geometry on Flight Performance

[+] Author Affiliations
Jeffrey Feaster, Francine Battaglia, Javid Bayandor

Virginia Tech, Blacksburg, VA

Paper No. AJKFluids2015-4364, pp. V001T04A001; 9 pages
doi:10.1115/AJKFluids2015-4364
From:
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME

abstract

The influence of cross-sectional geometry on flight performance is investigated for an insect wing using bee-like kinematics. Bee flight is of particular interest due to its mechanical simplicity, utilizing only three degrees of freedom, a high flap frequency, and mechanically linked front and hind wings. These unique flapping flight kinematics result in extremely agile flight characteristics, capable of carrying extraordinary loads relative to the bee’s weight, at a biologically capable efficiency. The performance of a corrugated insect wing and a more intuitively aerodynamic profile are compared computationally. At velocities from 1–3 m/s, the approximated cross-section is foudn to overpredict the lift generated by the corrugated profile by up to 18%. At higher velocities, 4 and 5 m/s, the approximated profile underpredicts the lift generated by the corrugated cross-section by 15%. Based upon this information the cross-sectional geometry of an insect’s wing is significant to the investigation and quantification of insect flight characteristics, for both computational analysis and future robotic applications.

Copyright © 2015 by ASME
Topics: Geometry , Wings , Flight

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In