0

Full Content is available to subscribers

Subscribe/Learn More  >

Direct Numerical Simulation of the Flow Through a Structured Pebble Bed Near a Wall Boundary

[+] Author Affiliations
Lambert Fick, Elia Merzari

Argonne National Laboratory, Chicago, IL

Yassin Hassan

Texas A&M University, College Station, TX

Paper No. AJKFluids2015-3701, pp. V001T03A008; 7 pages
doi:10.1115/AJKFluids2015-3701
From:
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME

abstract

Packed pebble beds occur in many industrial applications, including the very high temperature and molten salt nuclear reactor design concepts. These designs are currently being researched as possible fourth-generation nuclear power system designs. In order to ensure proper cooling of the reactor cores in these systems during normal operation, as well as under accident conditions, a detailed understanding of the coolant flow behavior is required. Direct numerical simulation (DNS) can be used to simulate specific pebble bed flow and geometry conditions in order to develop high-fidelity fluid flow data and hence improve scientists’ understanding and enhance lower-fidelity modeling.

We have used Nek5000, a spectral-element computational fluid dynamics code, to develop DNS fluid flow data for pebble bed flow, including budgets for the Reynolds stresses. The geometry is a structured pebble bed with a face-centered cubic packing arrangement. The flow domain features periodic boundaries in both streamwise and spanwise directions except for a single bounding wall parallel to the flow direction. In a fully periodic domain, the flow was found to be asymmetric. In this work we focus on turbulence properties in the near-wall region and their effect on the overall flow behavior. A set of preliminary Reynolds-averaged Navier-Stokes calculations was also performed to investigate the effect of geometric parameters such as the distance of the wall from the first row of pebbles.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In