Full Content is available to subscribers

Subscribe/Learn More  >

CFD Simulation of a Supersonic Steam Ejector for Refrigeration Application

[+] Author Affiliations
Liju Su, Ramesh K. Agarwal, Subhodeep Banerjee

Washington University in St. Louis, St. Louis, MO

Paper No. AJKFluids2015-3125, pp. V001T03A003; 4 pages
  • ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
  • Volume 1: Symposia
  • Seoul, South Korea, July 26–31, 2015
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5721-2
  • Copyright © 2015 by ASME


Supersonic steam ejectors are widely used in many industrial applications, for example for refrigeration and desalination. The experimental evaluation of the flow field inside the ejector is relatively difficult and costly due to the occurrence of shock after the velocity of the steam reaches over the sonic level in the ejector. In this paper, numerical simulations are conducted to investigate the detailed flow field inside a supersonic steam (water vapor being the working fluid) ejector. The commercial computational fluid dynamics (CFD) flow solver ANSYS-Fluent and the mesh generation software ANSYS-ICEM are used to predict the steam performance during the mixing inside the ejector by employing two turbulence models, the k-ω SST and the k-ε realizable models. The computed results are validated against the experimental data. The effects of operating conditions on the efficiency of the ejector such as the primary fluid pressure and condenser pressure are studied to obtain a better understanding of the mixing process and entrainment. Velocity contours, pressure plots and shock region analyses provide a good understanding for optimization of the ejector performance, in particular how to increase the entrainment ratio.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In