0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Optimization of Advanced Monolithic Microcoolers for High Heat Flux Microelectronics

[+] Author Affiliations
Sebastian Scholl, Catherine Gorle, Farzad Houshmand, Mehdi Asheghi, Kenneth Goodson

Stanford University, Stanford, CA

Tom Verstraete

Von Karman Institute for Fluid Dynamics, Rhode-Saint-Gènese, Belgium

Paper No. IPACK2015-48123, pp. V003T10A018; 10 pages
doi:10.1115/IPACK2015-48123
From:
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5690-1
  • Copyright © 2015 by ASME

abstract

This study considers the optimization of a complex micro-scale cooling geometry that represents a unit-cell of a full heat sink microstructure. The configuration consists of a channel with a rectangular cross section and a hydraulic diameter of 100 μm, where the fluid flows between two cooling fins connected by rectangular crossbars (50 × 50 μm). A previous investigation showed that adding these crossbars at certain locations in the flow can increase the heat transfer in the microchannel, and in the present work we perform an optimization to determine the optimal location and number of crossbars. The optimization problem is defined using 12 discrete design parameters, which represent 12 crossbars at different locations in the channel that can either be turned off and become part of the fluid domain, or turned on and become part of the solid domain. The optimization was done using conjugate heat transfer computational fluid dynamics (CFD) simulations using Fluent 15.0. All possible 4096 configurations were simulated for one set of boundary conditions. The domain was discretized using about 1 million nodes combined for the fluid and solid domains and the computational time was around 1 CPU hour per case. The results show that further improvements in heat transfer are feasible at an optimized pressure drop. The results cover a range of pressure drops from 25 kPa to almost 90 kPa and the heat transfer coefficient varies from 60 to 120 kW/m2K. The configurations on the Pareto front show the trend that crossbars closer to the maximal fluid-solid interface result in a more optimal performance than crossbars positioned farther away. In addition to performing simulations for all possible configurations, the potential of using a genetic algorithm to identify the configurations that define the Pareto front was explored, demonstrating that a 80% reduction in computational time can be achieved. The results of this study demonstrate the significant increase in performance that can be obtained through the use of computational tools and optimization algorithms for the design of single phase cooling devices.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In