0

Full Content is available to subscribers

Subscribe/Learn More  >

Embedded Cooling of High Heat Flux Electronics Utilizing Distributed Microfluidic Impingement Jets

[+] Author Affiliations
John Ditri, Joseph Hahn, Roland Cadotte, Michael McNulty

Lockheed Martin, Moorestown, NJ

Denise Luppa

Lockheed Martin, Syracuse, NY

Paper No. IPACK2015-48689, pp. V003T10A014; 10 pages
doi:10.1115/IPACK2015-48689
From:
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5690-1
  • Copyright © 2015 by ASME

abstract

Embedded cooling techniques, utilizing microfluidic channels directly within a die substrate or in a miniature heat sink attached to the base of the die, have been known for decades [1] [2] [3]. Despite their demonstrated thermal benefits, such techniques and devices have not been successfully transitioned from the laboratory to either the commercial or military arena. Some of the hurdles preventing implementation to date have been the inability to miniaturize the supporting hardware, the high unit cost of fabricating individual microfluidic coolers, and the unknown reliability of the new technologies introduced. Recent advances in micro manufacturing and co-design/simulation capabilities have enabled significant progress to be made, aided by a significant new focus on embedded cooling technologies was recently initiated by DARPA [4]. This paper will present a recently fabricated embedded cooling system consisting of a state of the art, micro-miniature, 3D microfluidic manifold suitable for near term integration into existing systems. Computational fluid dynamics (CFD) and conjugate heat transfer (CHT) simulations demonstrate the ground breaking thermal performance achieved by the device, and coupled-field flow, thermal, structural and erosion simulations are also presented to address some of the reliability concerns. Finally, measured thermal performance is presented, validating the predicted thermal performance.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In