0

Full Content is available to subscribers

Subscribe/Learn More  >

Embedded Two-Phase Cooling of Large 3D Compatible Chips With Radial Channels

[+] Author Affiliations
Mark Schultz, Fanghao Yang, Evan Colgan, Robert Polastre, Bing Dang, Cornelia Tsang, Michael Gaynes, Pritish Parida, John Knickerbocker, Timothy Chainer

IBM T. J. Watson Research Center, Yorktown Heights, NY

Paper No. IPACK2015-48348, pp. V003T10A007; 6 pages
doi:10.1115/IPACK2015-48348
From:
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5690-1
  • Copyright © 2015 by ASME

abstract

Thermal performance for embedded two phase cooling using dielectric coolant (R1234ze) is evaluated on a ∼20 mm × 20 mm large die. The test vehicles incorporate radial expanding channels with embedded pin fields suitable for through-silicon-via (TSV) interconnects of multi-die stacks. Power generating features mimicking those anticipated in future generations of processor chips with 8 cores are included. Initial results show that for the types of power maps anticipated, critical heat fluxes in “core” areas of at least 350 W/cm2 with at least 20 W/cm2 “background” heating in rest of the chip area can be achieved with less than 30 °C temperature rise over the inlet coolant temperature. These heat fluxes are significantly higher than those seen for relatively long parallel channel devices of similar base channel dimensions. Experimental results of flow rate, pressure drop, “device,” and coolant temperature are also provided for these test vehicles along with details of the test facility developed to properly characterize the test vehicles.

Copyright © 2015 by ASME
Topics: Cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In