Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Conductivity of Phonon Modes in Graphene Nanoribbon at Localized High Heating

[+] Author Affiliations
Tatiana Zolotoukhina

Toyama University, Toyama, Japan

Paper No. IPACK2015-48297, pp. V003T04A003; 8 pages
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5690-1
  • Copyright © 2015 by ASME


The spectral components of the phonon transport in the locally thermally excited graphene samples were studied by molecular dynamics (MD) method. In order to be able to select and analyze separate phonon modes in the time of propagation, the transient Green-Kubo approach to the definitions of density of states (DOS) and thermal conductivity was tested in quasi-equilibrium regimes for limited region of the graphene sample studied. Propagation of single modes at the background of diffusional phonon distribution and energy decay of such modes are studied by calculation of the DOS and dispersion relations, their dependence on the heating condition and temperature is studied. Similar conditions can be generated at localized heating of small areas of graphene structures in electronic devices. In transient regime, many issues of thermal transport evaluation still remain not sufficiently tested, especially phonon dynamics. Thermal conductivity of graphene samples related to transport of separate phonon modes is still not completely investigated, however, recent result give indication on the difference in the contribution of phonon modes. In the study, we consider mostly high temperature transport modes that are generated at the heated spot in order to be able to define their velocities and lifetimes in the limit of transient MD sampling.

The single-layer graphene nanoribbon of 150 nm to 40 nm was relaxed and prepared in equilibrium in zigzag and armchair orientations. REBO potential for graphene was utilized. Our calculation has shown that at the heating to high temperatures of 1000K and higher, the G mode of graphene remains stationary and has a minimal contribution into thermal transport by coherent modes. The coherent phonon mode or modes that contribute the most into thermal transport were confined in the vicinity of 30 THz and can possibly be attributed to the D modes of graphene.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In