0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Characterization of Metal Foams for Contact Resistance in Thermal Interface Applications

[+] Author Affiliations
Ninad Trifale, Eric Nauman, Kazuaki Yazawa

Purdue University, West Lafayette, IN

Paper No. IPACK2015-48535, pp. V001T09A075; 6 pages
doi:10.1115/IPACK2015-48535
From:
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Thermal Management
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5688-8
  • Copyright © 2015 by ASME

abstract

We present a study on the effective mechanical compliance of porous aluminum foams. We develop an experimental setup to characterize the elastic properties as well as evaluate surface deformation with respect to porosity as well as pore size in an effort to correlate the properties to contact resistance of the foams when used as thermal interface materials. There have been multiple studies in the past to evaluate the effective elastic modulus of porous structure as a function of porosity through experimentation, simulation as well as analytic models. This work also serves as a validation for analytic and experimental data published by various researchers in the past. This study is one aspect of a larger study to empirically correlate the area of contact to thermal contact resistance. We evaluate samples with three different porosity and three different PPI (pores per inch) specification. Additionally we analyze effect of presence of filler material in the voids — a phase change material. The filler is used as separate stand-alone TIM in the industry currently.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In