0

Full Content is available to subscribers

Subscribe/Learn More  >

On Simple Prediction Method for Thermal Contact Resistance Between Wavy Surfaces With Thermal Interface Material Under Low Mean Nominal Contact Pressure (Fundamental Study Based on 1-D Model)

[+] Author Affiliations
Toshio Tomimura, Yasushi Koito, Taewan Do

Kumamoto University, Kumamoto, Japan

Masaru Ishizuka, Tomoyuki Hatakeyama

Toyama Prefectural University, Imizu, Toyama, Japan

Paper No. IPACK2015-48302, pp. V001T09A073; 5 pages
doi:10.1115/IPACK2015-48302
From:
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Thermal Management
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5688-8
  • Copyright © 2015 by ASME

abstract

The thermal contact resistance (TCR) is the crucial issue in the field of heat removal from systems like electronic equipment, satellite thermal control systems, and so on. To cope with the problem, a lot of studies have been done mainly for flat rough surfaces. However, as pointed out so far, there are still wide discrepancies among measured and predicted TCRs, even for similar materials. To investigate the key factors for the abovementioned discrepancies, a fundamental analysis was conducted in our previous study [1] using a simple contact surface model, which was composed of the unit cell model proposed by Tachibana [2] and Sanokawa [3]. Furthermore, by introducing a 2-D microscopic surface model, which consists of random numbers and Abbott’s bearing area curve, the effects of surface waviness and roughness on the temperature fields near the contact interface have been investigated microscopically [4]. In this study, based on a 1-D wavy surface model, a fundamental study has been conducted to predict TCR and the thermal contact conductance (TCC), which is a reciprocal of TCR, between wavy surfaces with the thermal interface material (TIM) under a relatively low mean nominal contact pressure of 0.1–1.0 MPa. From comparison between the calculated and measured results, it has been shown that, in spite of a simple 1-D analysis, the present model predicts the temperature drop at the contact interface, which is obtained as the product of TCR and the heat rate flowing through TIM, within some 10 to 60% error for a TIM with the thermal conductivity of 2.3 W/(m·K) and the initial thickness of 0.5, 1 and 2 mm.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In