Full Content is available to subscribers

Subscribe/Learn More  >

Art and Science Towards Noiseless Driving of Liquid Metal for Advanced Thermal Management of High Heat Flux Device

[+] Author Affiliations
Jing Liu, Zhong-Shan Deng, Zhi-Zhu He

Chinese Academy of Sciences, Beijing, China

Paper No. IPACK2015-48698, pp. V001T09A059; 9 pages
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Thermal Management
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5688-8
  • Copyright © 2015 by ASME


The room temperature liquid metal cooling is quickly emerging as a powerful way for the thermal management in many advanced high heat flux devices, spanning from electronics, optoelectronics, battery, to power system etc. Except for its pretty high conductivity that a metal coolant could offer, the unique merit lying behind this new generation cooling strategy is its drivability of the highly conductive coolant through the electromagnetic effect where no moving elements are involved and thus only very few energy consumption is needed. In addition, even waste heat could be strong enough to generate applicable electricity for such flow driving purpose. More directly, the temperature gradient intrinsically generated between the heat source and the sink has also been managed to drive the flow of the coolant and realize an automatic practical enough cooling in some situations. All these practices lead to a totally noiseless pumping of the heat delivery and a compact and reliable cooling modular can thus be possible. Starting from this basic point, we are dedicated here to present an overview on the art and science in developing the technical strategies for a smart driving of the liquid metal cooling of the target devices. Designing philosophy for an innovated thermal management will be discussed. Particularly, electromagnetic pumping, waste thermoelectricity driving, thermosyphon flow effect, etc. will be comparatively evaluated with each of the working performances interpreted. Power consumption rate and efficiency will be quantitatively digested. Typical application examples in the cooling of a series of device areas will be illustrated. Further improvement on the cooling solution along this category will be suggested. Challenging issues in pushing the new technology into large scale utilization will be raised. It is expected that such silent self-driving of the liquid metal coolant will find unique and important values in a wide variety of thermal management areas where reliability, compactness, low noise and energy saving are urgently requested.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In