0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Design of a Hierarchical Radially Expanding Cavity for Two-Phase Cooling of Integrated Circuits

[+] Author Affiliations
Arvind Sridhar, Chin Lee Ong, Stefan Paredes, Bruno Michel, Thomas Brunschwiler

IBM Research Zürich, Rüschlikon, Switzerland

Pritish Parida, Evan Colgan, Timothy Chainer

IBM T J Watson Research Center, Yorktown Heights, NY

Catherine Gorle, Kenneth E. Goodson

Stanford University, Stanford, CA

Paper No. IPACK2015-48690, pp. V001T09A039; 10 pages
doi:10.1115/IPACK2015-48690
From:
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Thermal Management
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5688-8
  • Copyright © 2015 by ASME

abstract

A major challenge in the implementation of evaporative two-phase liquid-cooled ICs with embedded fluid microchannels/cavities is the high pressure drops arising from evaporation-induced expansion and acceleration of the flowing two-phase fluid in small hydraulic diameters. Our ongoing research effort addresses this challenge by utilizing a novel hierarchical radially expanding channel networks with a central embedded inlet manifold and drainage at the periphery of the chip stack. This paper presents a qualitative description of the thermal design process that has been adopted for this radial cavity. The thermal design process first involves construction of a system-level pressure-thermal model for the radial cavity based on both fundamental experiments as well as numerical simulations performed on the building block structures of the final architecture. Finally, this system-level pressure-thermal model can be used to identify the design space and optimize the geometry to maximize thermal performance, while respecting design specifications. This design flow presents a good case study for electrical-thermal co-design of two-phase liquid cooled ICs.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In