0

Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Study to Compare the Data Center Cooling Energy Spent Using Traditional Air Cooled and Hybrid Water Cooled Servers

[+] Author Affiliations
Aparna Vallury, Mark E. Steinke, Vinod Kamath

Lenovo Group Ltd., Morrisville, NC

Lynn Parnell

Consulting Engineer, Charlottesville, VA

Paper No. IPACK2015-48476, pp. V001T09A032; 8 pages
doi:10.1115/IPACK2015-48476
From:
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Thermal Management
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5688-8
  • Copyright © 2015 by ASME

abstract

High performance datacenters that are being built and operated to ensure optimized compute density for high performance computing (HPC) workloads are constrained by the requirement to provide adequate cooling for the servers. Traditional methods of cooling dense high power servers using air cooling imposes a large cooling and power burden on datacenters. Airflow optimization of the datacenter is a constraint subject to a high energy penalty when dense power hungry racks each capable of consuming 30 to 40 kW are populated in a dense datacenter environment. The work documented using a simulation model (TileFlow) in this paper demonstrates the challenges associated with a standard air cooled approach in a HPC datacenter. Alternate cooling approaches to traditional air cooling are simulated as a comparison to traditional air cooling. These include models using a heat exchanger assisted rack cooling solution with conventional chilled water and, a direct to node cooling model simulated for the racks.

These three distinct data center models are simulated at varying workloads and the resulting data is presented for typical and maximal inlet temperatures to the racks. For each cooling solution an estimate of the energy spend for the servers is determined based on the estimated PUEs of the cooling solutions chosen.

Copyright © 2015 by ASME
Topics: Cooling , Data centers , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In