Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Relative Humidity, Temperature and Gaseous and Particulate Contaminations on Information Technology Equipment Reliability

[+] Author Affiliations
Prabjit Singh

IBM Corporation, Poughkeepsie, NY

Levente Klein

IBM Research, Yorktown Heights, NY

Dereje Agonafer, Jimil M. Shah, Kanan D. Pujara

University of Texas, Arlington, TX

Paper No. IPACK2015-48176, pp. V001T09A015; 9 pages
  • ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1: Thermal Management
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5688-8
  • Copyright © 2015 by ASME


The energy used by information technology (IT) equipment and the supporting data center equipment keeps rising as data center proliferation continues unabated. In order to contain the rising computing costs, data center administrators are resorting to cost cutting measures such as not tightly controlling the temperature and humidity levels and in many cases installing air side economizers with the associated risk of introducing particulate and gaseous contaminations into their data centers. The ASHRAE TC9.9 subcommittee, on Mission Critical Facilities, Data Centers, Technology Spaces, and Electronic Equipment, has accommodated the data center administrators by allowing short period excursions outside the recommended temperature-humidity range, into allowable classes A1-A3. Under worst case conditions, the ASHRAE A3 envelope allows electronic equipment to operate at temperature and humidity as high as 24°C and 85% relative humidity for short, but undefined periods of time. This paper addresses the IT equipment reliability issues arising from operation in high humidity and high temperature conditions, with particular attention paid to the question of whether it is possible to determine the all-encompassing x-factors that can capture the effects of temperature and relative humidity on equipment reliability. The role of particulate and gaseous contamination and the aggravating effects of high temperature and high relative humidity will be presented and discussed. A method to determine the temperature and humidity x-factors, based on testing in experimental data centers located in polluted geographies, will be proposed.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In