Full Content is available to subscribers

Subscribe/Learn More  >

Full Scale Simulation-Based Study on Dynamic Response of BWR Fuel Assemblies Under Seismic Loading

[+] Author Affiliations
Shinobu Yoshimura, Tomonori Yamada

The University of Tokyo, Tokyo, Japan

Yuichi Koide

Hitachi, Ltd., Hitachinaka, Japan

Shohei Onitsuka, Tadashi Iijima

Hitachi-GE Nuclear Energy, Ltd., Hitachi, Japan

Paper No. PVP2015-45334, pp. V008T08A048; 8 pages
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5703-8
  • Copyright © 2015 by ASME


The purpose of this study is to investigate dynamic response behaviors of fuel assemblies in a boiling water reactor (BWR) under seismic loading. The core of BWR consists of several hundreds of fuel assemblies. They are supported with both top guide and fuel support and are surrounded by coolant water. It is important to grasp their dynamic response behaviors under seismic loading for securing the structural integrity of the fuel assembly itself as well as for assessing control rod scrammability. In this study, we employ two different numerical simulation methods of acoustic fluid-structure interaction (AFSI) developed by the present authors independently. The one is a three-dimensional parallel finite element method for AFSI problems with solid elements based on a partitioned coupling approach, while the other is a finite element method of beam elements for fuel assemblies combining added mass matrix, which represents coupled inertia effects caused by coolant water.

Both methods are first applied to a problem of 36 fuel assemblies for numerical verification, and then applied to a problem of 368 fuel assemblies for validation. The latter problem was set up based on the demonstration test performed by the NUPEC (Nuclear Power Engineering Corporation) in 1986. Both simulation results agreed well with each other in all cases, and the simulated results also agreed well with the experimental ones. In addition, we have precisely discussed seismic response behaviors of the fuel assemblies, which were not shown in the demonstration test. Accordingly, we conclude that the both developed simulation methods are powerful tools to grasp the precise behavior of fuel assemblies of BWR under seismic loading and to improve the seismic safety design of BWR core.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In