Full Content is available to subscribers

Subscribe/Learn More  >

A Piezoelectric Energy Harvesting Damper for Low-Frequency Application

[+] Author Affiliations
Arata Masuda, Yasuhiro Hiraki, Naoto Ikeda, Akira Sone

Kyoto Institute of Technology, Kyoto, Japan

Paper No. PVP2015-45830, pp. V008T08A009; 7 pages
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5703-8
  • Copyright © 2015 by ASME


In this study, a design of an energy harvesting damper for low-frequency applications, such as energy harvesting from long period infrastructures, tanks and pipings, and maritime and offshore structures, is presented. In this design, the low-frequency relative motion of the damper is transformed into a high-frequency motion of a piezoelectric cantilever beam by a mechanical switching mechanism, referred to as “plucking” mechanism that couples and decouples the cantilever to the damper rod so that the input energy into the damper is converted to electric energy with high efficiency. In this paper, the energy harvesting efficiency is theoretically calculated for the harvesters with and without plucking mechanism and the optimized maximum performance is derived. Then the electrical switching circuit for the enhancement of the electromechanical conversion efficiency, referred to as “SSHI” interface is introduced. Numerical case studies suggest that the harvester with an ideally implemented parallel SSHI circuit can retrieve over 70 % energy of the maximum mechanical work input on the damper rod.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In