0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Weld Residual Stress in a Pressurizer Surge Nozzle Full-Scale Mockup: The Effect of Hardening Constitutive Model and Interpass Temperature

[+] Author Affiliations
Minh N. Tran, Michael R. Hill, Mitchell D. Olson

University of California, Davis, Davis, CA

Ondrej Muránsky

ANSTO, Lucas Heights, Australia

Paper No. PVP2015-45744, pp. V06BT06A069; 13 pages
doi:10.1115/PVP2015-45744
From:
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5700-7
  • Copyright © 2015 by ASME

abstract

In an effort to shed light on accuracy and reliability of finite element (FE) weld modeling outputs, the U.S. Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) have been engaged in a program of cooperative research on weld residual stress (WRS) prediction. The current work presents numerical FE simulation of the WRS in a pressurizer surge nozzle full-scale mockup (Phase 2b), as a part of the broader NRC/EPRI program. Sequentially-coupled, thermo-mechanical FE analysis was performed, whereby the numerical solution from the thermal analysis was used as an input in the mechanical analysis. The thermal analysis made use of a dedicated weld modeling tool to accurately calibrate an ellipsoidal Gaussian volumetric heat source. The subsequent mechanical analysis utilized the isotropic and nonlinear kinematic hardening constitutive models to capture cyclic response of the material upon welding. The modeling results were then validated using a number of measurement techniques (deep hole drilling, contour method, slitting, and biaxial mapping). In addition, an effect of the interpass temperature (i.e. 24.5 °C, 150 °C, and 260 °C) on the final prediction of WRS is discussed.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In